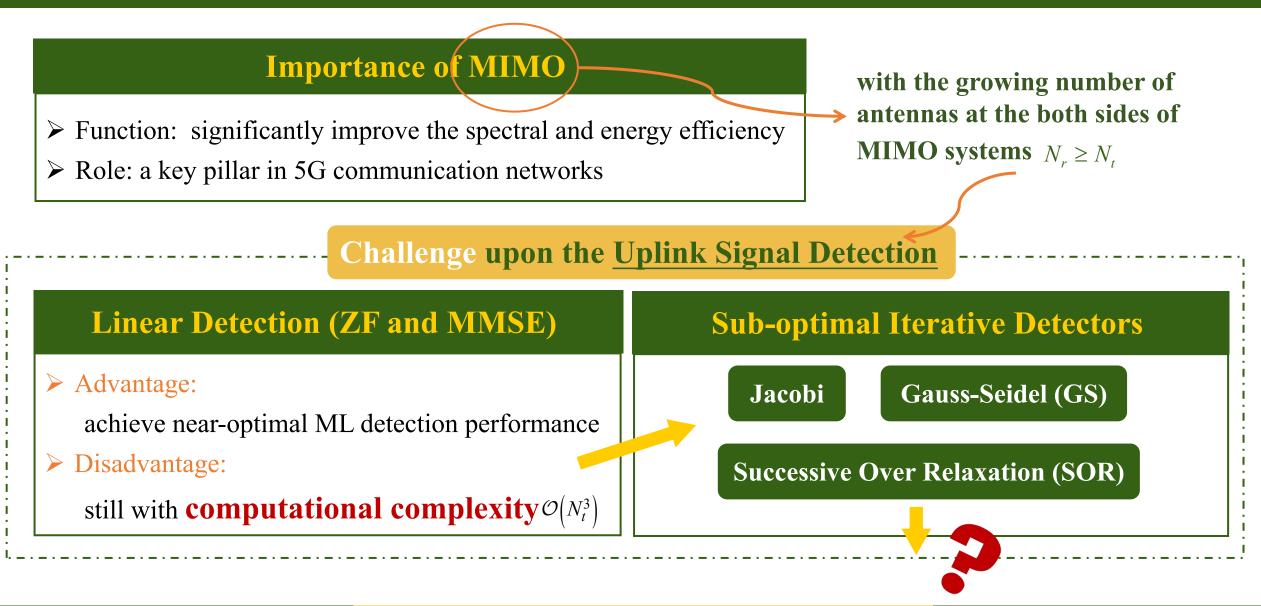
Ordered Iterative Methods for Low-**Complexity Massive MIMO Detection**

Beilei Gong, Ningxin Zhou, Zheng Wang

Southeast University

2023.6.23

1 Background



3

1 Background

Deep Learning (DL)

Combine the internal structure of certain model-based algorithms with the remarkable power of deep neural networks (DNN)

Data-driven DL detectors

> DetNet

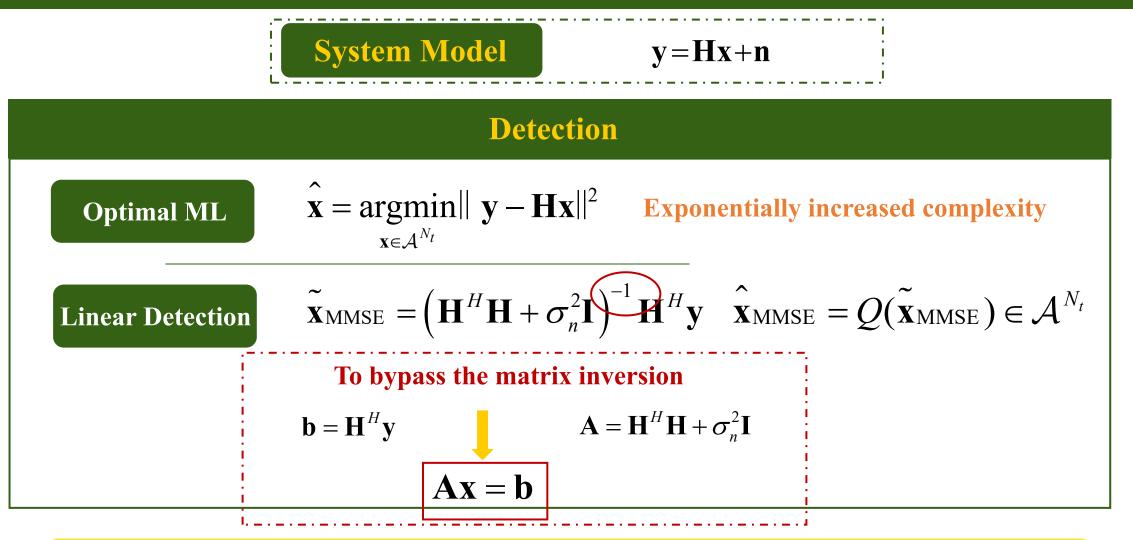
- > unfold projected gradient descent via DNN
- achieve better performance than MMSE detector

Model-driven DL detectors

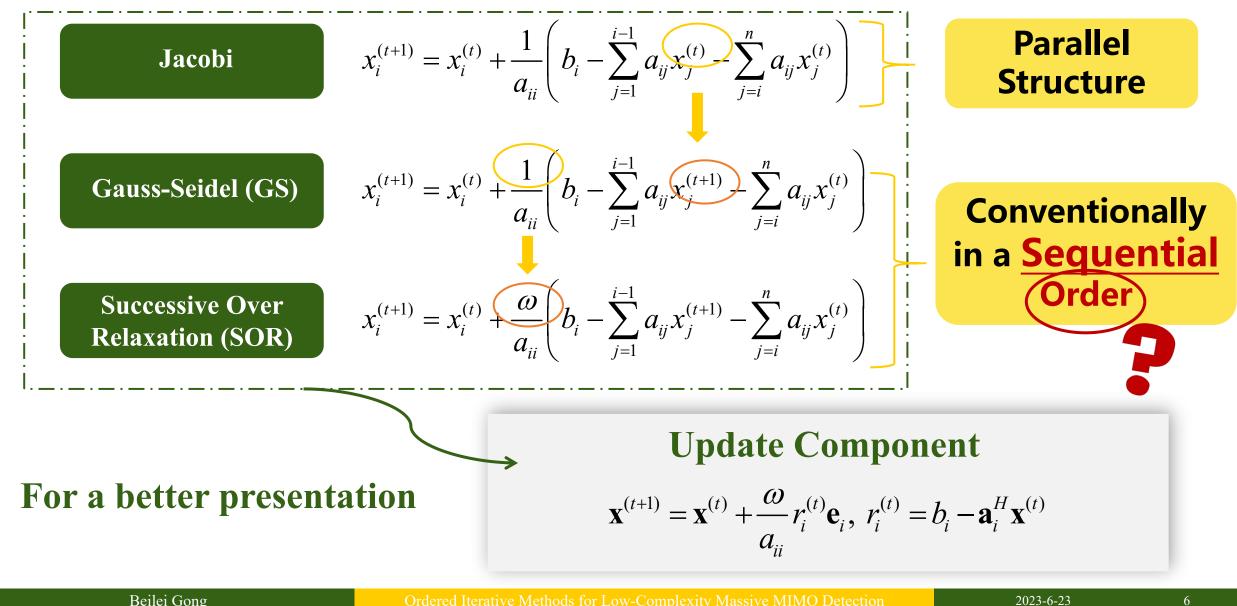
> OAMPNet

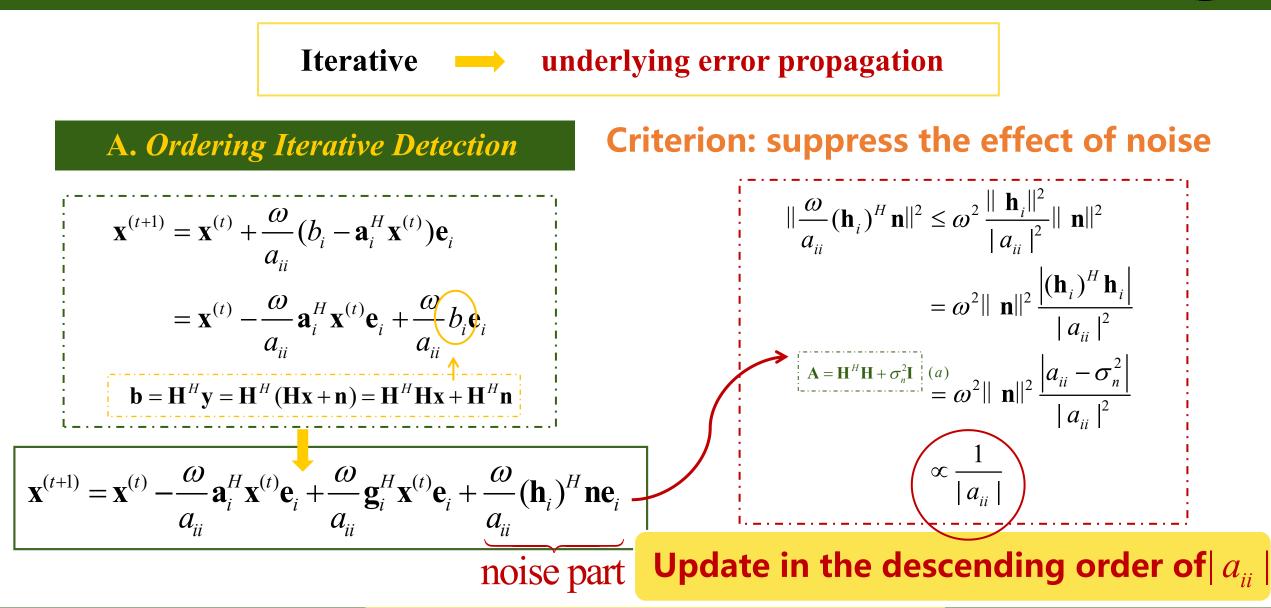
- exploit full domain knowledge with a few trainable parameters optimized
- ➤ outperform the original OAMP

Achieve comparable performance via DL in massive MIMO detection



Iterative methods are proposed to solve this linear equation





Restriction on OID: fixed order ; cyclic traversal iteration

B. Modified Ordered Iterative Detection

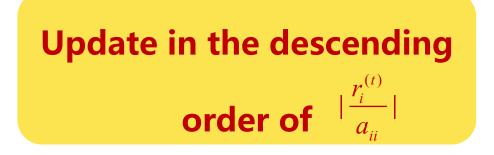
Dynamic Ordering Strategy

$$\mathbf{x}^{(t+1)} - \mathbf{x}^{(t)} = \Delta \mathbf{x} = \frac{\omega}{a_{ii}} r_i^{(t)} \mathbf{e}_i, \ r_i^{(t)} = b_i - \mathbf{a}_i^H \mathbf{x}^{(t)}$$

A large size Δx

A large change of the iteration

Positive impact upon the convergence



C. Complexity Analysis

Algorithm 1: OID

Input $\mathbf{A} = \mathbf{H}^{H}\mathbf{H} + \sigma_{n}^{2}\mathbf{I}, \mathbf{b} = \mathbf{H}^{H}\mathbf{y}, \mathbf{x}^{(0)} = \mathbf{0}, T$ Output near MMSE detection solution $\hat{\mathbf{x}}^{(t)}$

- 1: for t = 0, 1, ..., T 1 do
- 2: Select *i* coordinate in descending order of $|a_{ii}|$
- 3: Update $\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} + \frac{\omega}{a_{ii}} r_i^{(t)} \mathbf{e}_i$
- 4: end for
- 5: output $\widehat{\mathbf{x}}^{(t)}$ by rounding $\mathbf{x}^{(t)}$ based on constellation \mathcal{A}^{N_t}

Algorithm 2: MOID

Input $\mathbf{A} = \mathbf{H}^{H}\mathbf{H} + \sigma_{n}^{2}\mathbf{I}$, $\mathbf{b} = \mathbf{H}^{H}\mathbf{y}$, $\mathbf{x}^{(0)} = \mathbf{0}$, TOutput near MMSE detection solution $\hat{\mathbf{x}}^{(t)}$ 1: for t = 0, 1..., T - 1 do 2: Update the descending order o(i) by $|\frac{r_{i}^{(t)}}{a_{ii}}|$ when $t = 0, N_{t}, 2N_{t}, ...$ 3: Select *i* coordinate in descending order of o(i)4: Update $\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} + \frac{\omega}{a_{ii}}r_{i}^{(t)}\mathbf{e}_{i}$ 5: end for 6: output $\hat{\mathbf{x}}^{(t)}$ by rounding $\mathbf{x}^{(t)}$ based on constellation $\mathcal{A}^{N_{t}}$

Preprocess operation, reduce the complexity

 TABLE I

 COMPUTATIONAL COMPLEXITY OF ITERATIVE DETECTION SCHEMES

MIMO detection	Multiplication		Summation		
SOR [12]		$N_t^2 +$	$\cdot N_t$	N_t^2 ·	$-N_t$
OID		$N_t^2 +$	$2N_t$	N_t^2 ·	$-N_t$
MOID		$2N_t^2 +$	$3N_{ m t}$	N_t^2	$-N_{ m t}$

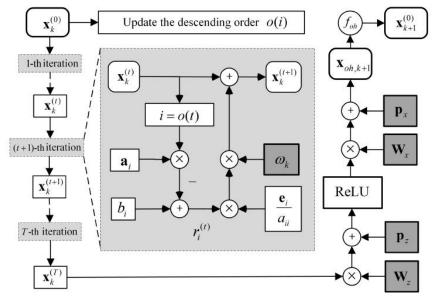
Loosely dynamic ordering strategy

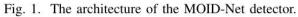
OID and **MOID** maintain $\mathcal{O}(N_t^2)$

$$\omega_{opt} = \frac{2}{1 + \sqrt{1 - \rho^2(J)}}, \rho(J) = \left(1 + \left[\sqrt{\frac{N_t}{N_r}}\right]^2 - 1$$
 Not Optimal

For a better detection performance, upgrade the proposed MOID algorithm with DNN

Projection OperationLearning parameters
$$\mathbf{x}_{k}^{(T)} = \mathbf{x}_{k}^{(T-1)} + \underbrace{\omega_{k}}_{i} \underbrace{$$



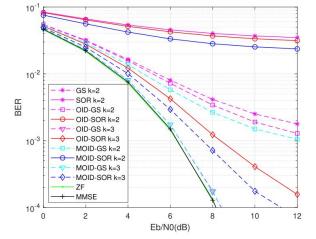


2023-6-23

10

東南大學

5 Simulations



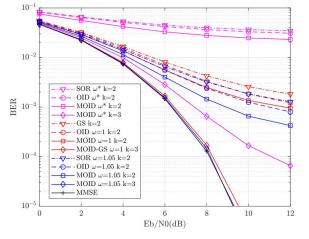


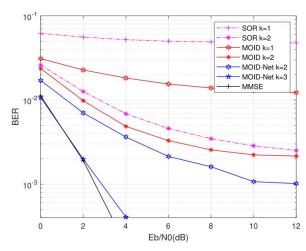
Fig. 2. Performance comparison under 64-QAM scheme of size 128×16 .

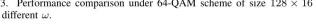
Fig. 3. Performance comparison under 64-QAM scheme of size 128×16 with different ω .

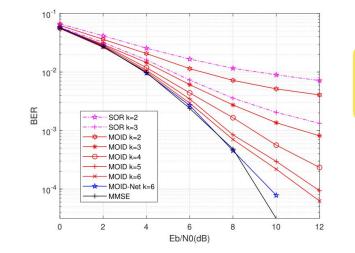
Detection Performance

MOID > OID> Conventional Iterative Method

> MMSE detection is applied as the **baseline** $\succ \omega$ has a great effect on the convergence







MOID-Net > MOID > Conventional Iterative Method

> More iteration numbers needed with the loss of receive diversity

Fig. 4. Performance comparison under 16-QAM scheme of size 128×16 . Fig. 5. Performance comparison under 4-QAM scheme of size 32×16 .

Conclusion

Propose two ordered iterative detection methods for better signal detection performance in massive MIMO systems.

OID

- To reduce error propagation in the traditional iterative detection schemes with sequential order
- Achieves a better detection
 performance with low complexity

MOID

- Convergence chiefly depends on the residual component during the iterations.
- A dynamic ordering strategy
- Further performance improvement

MOID-Net

- > Extend the proposed algorithm via **DNN** and **relaxation factor are trained** to optimal
- Further performance gain

Thank you for your watching

Beilei Gong, Ningxin Zhou, Zheng Wang

Southeast University

2023.6.23

